EMI Sources & Optimization on Step-Down Converter

Author: Ralf Ohmberger Presenter: Sky Chen

Aug 2023

- EMI Sources of Step-down Converter
- SW-node Waveform Measurements and Influence on EMI Performance
- EMI Tips
- Example on EMI Performance Optimization

Refresh of Buck voltage and current waveform

- V_{IN} hot-loop \rightarrow fast current change $\frac{di}{dt}$, H-field
- SW-node \rightarrow fast voltage change $\frac{du}{dt}$, E-field

 Major EMI Emissions Source → SW-node & Vin hot-loop
Emission Flow Direction

> Typical ranking for EMI noise Emissions Severity

1.	highest
2.	
3.	sions
4.	Emis
5.	
6.	lowest

- V_{IN} hot-loop MLCCs \rightarrow fast current change $\frac{di}{dt}$, H-field
- SW-node \rightarrow fast voltage change $\frac{du}{dt}$, E-field

Find correct Vin fast di/dt loop

Buck Cin filt = 1 filt = 1

$$E = \frac{263e^{-16} \times f^2 \cdot I \cdot A}{r}$$

E: electro magnetic field energy

A: loop area of the high di/dt current path

Decrease VIN hot-loop energy

- Choose synchronize Buck converter with built-in MOSFET
- Place small package/ capacitance input caps as close to IC VIN/GND pin as possible
- Device with built-in Cin (MPQxxxxM)
- Symmetrical placement of input caps on layout

- V_{IN} hot-loop MLCCs \rightarrow fast current change $\frac{di}{dt}$, H-field
- SW-node \rightarrow fast voltage change $\frac{du}{dt}$, E-field

Decrease VIN hot-loop energy

Choose synchronize Buck converter with built-in MOSFET

SYNC Buck solution with built-in MOSFET

Non-SYNC Buck solution with external diode

Controller solution with external HS & LS MOSFET

- V_{IN} hot-loop MLCCs \rightarrow fast current change $\frac{di}{dt}$, H-field
- SW-node \rightarrow fast voltage change $\frac{du}{dt}$, E-field

Decrease VIN hot-loop energy

> Place small package/capacitance CIN (with small ESL) as close to IC VIN/GND pin as possible

- V_{IN} hot-loop MLCCs \rightarrow fast current change $\frac{di}{dt}$, H-field
- SW-node \rightarrow fast voltage change $\frac{du}{dt}$, E-field

Decrease VIN hot-loop energy

Choose device with built-in small input cap (MPQxxxxM)

CE Average: 30MHz to 108MHz BW=120kHz

- V_{IN} hot-loop MLCCs \rightarrow fast current change $\frac{di}{dt}$, H-field
- SW-node \rightarrow fast voltage change $\frac{du}{dt}$, E-field

Decrease VIN hot-loop energy

Symmetrical placement of input caps on layout

] ((

SW 12

PGND

VIN

1)

2

11 PGND

10

VIN

- 1. Decrease area of SW node, choose smaller size inductor
- 2. Shielding on inductor or whole SW node
- 3. Add common mode choke

EMI Sources of Step-down Converter

- SW-node Waveform Measurements and Influence on EMI Performance
- ➢ EMI Tips
- Example on EMI Performance Optimization

SW-node Waveform Measurements and Influence on EMI

The EMI character of a step-down converter PCB is predictable by the SWnode voltage waveform (hard to measure VIN hot loop current)

SW-node waveform information:

- Switching frequency (typ. 300kHz to 2.5MHz)
- SW rising and falling time (typ. 0.5ns to 3ns)

Frequency (typ. 100MHz to 1GHz) and amplitude of resonance in the rising and falling edge

SW-node waveform measurement method:

- With a high bandwidth oscilloscope
- Connect the probe with the lowest parasitic inductance (small loop, coaxial cable)
- FFT on the oscilloscope or with external mathematic

SW-node Waveform Measurements and Influence on EMI

Example for a SW-node waveform measurement

MPQ4371

36V, 6A-11A Low EMI Synchronous Step-Down Converters, with ZDP™ AEC-Q100 Qualified

MPQ4371 SW-node Waveform

SW-node information.

F_{SW}=420 kHz with FSS Modulation

SW-node analysis with the oscilloscope

MPQ4371 SW-node Waveform

SW-node information

Rising/falling time=~1ns

~250-300 MHz resonance frequency with max 2V amplitude

MPQ4371 SW-node Fast Fourier Transformation

MPQ4371 Dual Spread Spectrum Frequency Modulation for low EMI

F_{SW} =420kHz ±8.6% \rightarrow 384kHz to 456kHz

F_{RESONANCE}=250-300MHz

The rising resonance 273MHz can be found in the FFT of the SW-node

MPQ4371 Radiated Emission CISPR25-5 2021-12 (Monopole)

MPQ4371 Radiated Emission CISPR25-5 2021-12

Why not pass CISPR25-5 at constant F_{sw}=420kHz?

A 11A device must use a larger switching inductance at a lower F_{SW} =420 kHz to keep power dissipation low.

The 1st. harmonic (420 kHz) operates in the unlimited $dB\mu V/m$ range. The 2nd. harmonic (840kHz) slightly exceeds the AM radio range.

The 150k-30MHz RE source is often the SW-node and inductor. This RE does not come from the IC or from the EMI filter. Constant F_{SW} in high current devices often requires metal shielding.

Solutions:

- small SW-node cooper on layout
- select a flat inductor
- place the output MLCCs close as possible to this inductance (shield) or select a special metal shielded inductance.
- choose IC with FSS feature.

MPQ4371 Radiated Emission CISPR25-5 2021-12 (30M-200MHz)

MPQ4371 Radiated Emission CISPR25-5 2021-12 (200M-1GHz)

MPQ4371 SW-node resonance range around 200M-300MHz

> 300 MHz there is no significant emission and the signal align with the spectrum analyzer noise floor.

As an example, for a difficult to meet OEM EMI specification: the box black shows a digital TV range with a max. peak 25dBµV/m limit within 400 MHz to 710 MHz .

Conclusion about MPQ4371

- The dual spread spectrum frequency modulation is a great advantage with high currents, F_{SW} fundamental and harmonics are strongly suppressed.
- > MPQ4371 has a very nice rising and falling edge.
- The RE noise is below the 250-300MHz switching resonance, very clean at 400M-710MHz TV band which has strict limit line.

SW-node Comparison of Step-Down Converters

Example for a SW-node

MPQ4323C (high efficiency 3A) vs. MPQ4323M, (high efficiency 3A, Module)

The module has internal V_{IN} hot-loop MLCCs

MPQ4323C

42V Load Dump Tolerant, 3A Ultra-Compact Synchronous Step-Down Converter, AEC-Q100 Qualified

MPQ4323M

42V Load Dump Tolerant, 3A Ultra-Compact, Low-IQ Synchronous Step-Down Converter, AEC-Q100 Qualified

EVQ4323C

EVQ4323M

AGND

QFN-12L (3.5mmx3.5mm)

VCC AGND FB

QFN-12 (2mmx3mm)

Conducted Emissions (150k-108MHz) EVQ4323C vs. EVQ4323M

CISPR 25 (2021-12) 5.0: AN - class 5 Peak

CISPR 25 (2021-12) 5.0: AN - class 5 CAVG _____ Peak/9kHz _____ Peak/120kHz

CAVG/9kHz _____ CAVG/120kHz _____ CAVG/9kHz (#1) _____ CAVG/120kHz (#1)

Frequency

CISPR 25 (2021-12) 5.0: AN - class 5 QPeak

Peak/9kHz (#1)

Data Reduction

Peak/120kHz (#1)

Frequency

CISPR 25 (2021-12) 5.0: AN - class 5 Peak

CISPR 25 (2021-12) 5.0: AN - class 5 CAVG _____ Peak/9kHz _____ Peak/120kHz

CAVG/9kHz _____ CAVG/120kHz _____ CAVG/9kHz (#1) _____ CAVG/120kHz (#1)

CISPR 25 (2021-12) 5.0: AN - class 5 QPeak

Peak/9kHz (#1)

Data Reduction

Peak/120kHz (#1)

Radiated Emissions (30M-200MHz) EVQ4323C vs. EVQ4323M

Radiated Emissions (200M-1GHz) EVQ4323C vs. EVQ4323M

Radiated Emissions (1G-6GHz) EVQ4323C vs. EVQ4323M

Peak/1MHz

Peak/120kHz

CAVG/1MHz

EVQ4323C

CISPR 25 (2021-12) 5.0: RE - class 5 CAVG

CAVG/120kHz

Data Reduction

70 dBµV/r

60 dBuV/r

40 dBuV/r

20 dBµV/

0 dBµV/i

-5 dBµV/m

70 dBµV/n

60 dBµV/m

40 dBµV/r

20 dBµV/n

0 dBµV/n

-5 dBuV/r

1 GHz

1.5 GHz

Peak/1MHz (#1)

CISPR 25 (2021-12) 5.0: RE - class 5 Peak

_____ Peak/120kHz (#1) _____ CAVG/9kHz

CAVG/1MHz (#1) _____ CAVG/9kHz (#1) _____ CAVG/120kHz (#1)

1 GHz

1.5 GHz

EVQ4323C

CISPR 25 (2021-12) 5.0; RE - class 5 Peak

_____ Peak/120kHz (#1) _____ CAVG/1MHz

_____ CAVG/9kHz (#1) _____ CAVG/120kHz (#1)

Peak/1MHz (#1)

_____ CAVG/1MHz (#1)

EMI Sources of Step-down Converter

SW-node Waveform Measurements and Influence on EMI Performance

EMI Tips

Example on EMI Performance Optimization

Increasing R_{BOOT} to Improve EMI?

Increasing R_{BOOT} to improve EMI?

(from datasheet MPQ4323C)

EN

It is not recommended to place a resistor (R_{BOOT}) in series with C4, unless there is a strict EMI requirement. RBOOT helps EMI enhance performance and reduce voltage stress at high input voltages, but it also generates additional power consumption and reduces efficiency. When R_{BOOT} is necessary, it should be below 4Ω .

Increasing R_{BOOT} to Improve EMI?

EVQ4323C $R_{BOOT}=0\Omega$

EVQ4323C R_{BOOT} =10 Ω

MPQ4323C datasheet has a recommendation maximum R_{BOOT}<4Ω toO Increasing R_{BOOT} EMI Much can worsen EMI → check the SW-node → check datasheet for R_{BOOT} • increasing R_{BOOT} to 10Ω (not a recommend, too large value), the resonance amplitude moves into the rising edge, this can degrade the switching performance between High Side and Low Side MOSFET, in a worst case scenario a short-cut between both MOSFETs can happen.

The resonance amplitude has increased → worsen EMI.

Increasing R_{BOOT} to improve EMI?

Conclusion

Pro – increasing $R_{BOOT} \rightarrow$ lowers SW-node rise/fall time (small effect compared to SW-node resonance). Pro – increasing $R_{BOOT} \rightarrow$ lowers SW-node resonance frequency

Contra - increasing $R_{BOOT} \rightarrow$ decrease efficiency. Contra - increasing $R_{BOOT} \rightarrow$ degrades SW-node waveform performance. Contra - increasing $R_{BOOT} \rightarrow$ can increase resonance amplitude.

 \succ increasing R_{BOOT} is one of the method worth to try, but is not a guaranteed EMI improvement.

Why does the amplitude of the resonance frequency of the SW-node have a greater impact on EMI than harmonic of switching frequency?

Amplitude of the Resonance Frequency - Impact on EMI

The 34mV amplitude of the 415th. harmonic is much lower than the measured 1V amplitude

Wikipedia image source: von René Schwarz - Eigenes Werk, SVG Version of File:Fouriersynthese.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11197146

measured resonance amplitude (t) = $1V * sin(2 * \pi * 912MHz * t)$

ideal square wave 415th. harmonic (t) = $34mV * \sin(2 * \pi * 912MHz * t)$

The resonance amplitude and the frequency:

has a much greater impact on EMI than harmonic of square PWM frequency

Electrolytic in the Input Filter

An electrolytic in the input filter can radiate EMI

Electrolytic in the Input Filter

Electrolytic and its housing

Electrolytic on EVQ4323C connected to VIN hot-loop MLCCs

- An electrolytic capacitor has a parasitic capacitance between the anode and the aluminum housing.
- The parasitic capacitance is conductive at higher frequencies.
- Any high frequency applied on the anode pin will radiate on the housing as antenna to the environmental.

H-field probe on the housing and on the anode pin

Date: 13.0CT.2022 12:24:21

H-field on the electrolytic **housing**

H-field on the electrolytic anode pin

EVQ4323C_Electrolytic_Anode_H-field_11V-to-5V-2A5

E-field probe on the electrolytic housing

Date: 13.0CT.2022 12:28:04

E-field on the electrolytic housing

E-field on the electrolytic **housing**

Added 1nF+68pF MLCC, shifts the resonance to another region.

Electrolytic in the Input Filter

The selected MLCC has a high influence on the trace resonance, can reduce EMI peaks.

The self-resonance behavior of the VIN trace can be affected by added MLCCs

EMI Sources of Step-down Converter

- SW-node Waveform Measurements and Influence on EMI Performance
- ➤ EMI Tips
- Example on EMI Performance Optimization

45 dBµV/n 40 dBuV/n 30 dBuV/n Digital TV band limit 25dBuV/m 🕈 20 dBμV/ι Pass CISPR25-5 10 dBuV/ Pass OEM 0 dBuV -5 dBuV/r 180 MHz 400 MHz 600 MHz 800 MHz 1 GHz Frequency CISPR 25 (2021-12) 5.0: RE - class 5 - 120kHz Peak CISPR 25 (2021-12) 5.0: RE - class 5 - 120kHz QPeak CISPR 25 (2021-12) 5.0: RE - class 5 - 120kHz CAVG Peak/120kHz Peak/120kHz (#1) CAVG/120kHz CAVG/120kHz (#1) A Data Reduction

EVQ4323M

Horizontal

Next experiment shows modifications on EVQ4323C to pass EMI OEM TV band request

- MPS EVQs in default condition are optimized for CISPR25 Class5, not for OEM.
- → "M" version fulfill both, can save your time, prevent many external MLCCs and simplify the layout design.

Figure 6: Mid-Layer 2

Figure 7: Bottom Layer and Bottom Silk

- A, B moving the V_{OUT} MLCCs closer to the inductance, improves EMI shielding of the inductance.
- C add MLCC 1210 22µF, 25V, improved shielding of the inductance.
- D remove E-cap, add 1uF+1nF+68pF MLCCs.
- E shorting the inner GND to outer GND, Island is not necessary on all layouts for EMI.
- F MLCC 0603, 22nF on BOT, bypass 5 vertical V_{IN} vias.
- G MLCC 0603, 22nF on TOP and BOT, bypass four vertical V_{IN} vias.
- H Adjust input filter parameters

evel

V_{IN}=13.5V, V_{OUT}=5V, F_{SW}=2.2MHz, I_{LOAD}=2.5A, R_{BOOT}=0Ω, Blue Peak Orange Average

400MHz to 710MHz

Conclusion

- VIN hot-loop and SW-node are the mainly EMI sources of Step-down Converter
- Measure and Compare the SW-node waveforms to predict the EMI character
- Some EMI tips
- Optimize the layout and the passive part selection for the required EMI specification

Thank you!

