Mastering Magnetic Sensing: Reducing Environmental Errors through Differential Techniques

November 2024

Session 1 will Begin at 8 AM PST | 11 AM EST | 5 PM CET

rev 20180504

Magnetic Sensing Basics

Accuracy in Magnetic Sensing

Sources of Interference

Differential Sensing

Case Studies / Examples

Q&A

Accuracy in Magnetic Sensing

Systematic

Can be Calibrated

Random

• Can be Filtered

External Influence

Shield / Shunt / Use Differential Technique

Systematic Error Sources

- 1. Integral Non-Linearity (INL)
- 2. Magnetic Misalignment with Sensor (Position Sensing)

3. Latency

	400	
r out (deg)	350	
	300	
	250	
	200	
enso	150	
00	100	
	50	$\frac{1}{1} resolution$ $\frac{1}{1} (\pm 3 \sigma)$ $\frac{1}{1} best straight fit$
	0	
		100 200 300 400 500 600 700
		rotor position (deg)

Latency Error	Comp A	MA600
Latency	10µs	0µs
At 30k RPM	1.8°	0°

Noise:

- Resolution captures impact from noise.
- Noise can be reduced by filtering, but this reduces sensor bandwidth.

MagAlpha MA702

Effective resolution	3σ deviation of the noise distribution	11.0	11.8	12.8	bits
Noise RMS		0.01	0.02	0.03	deg

Challenges:

- Determining of the sensor's real resolution.
- Understanding the relationship between resolution and BW.

MCS1806

•		-		
Noise density	I _{ND}	Input referred noise density	200	µA _(RMS) / √Hz
Noise	IN	Input referred, 1nF on FILT (60kHz bandwidth)	50	mA _(RMS)

External Magnetic Field Effect

The target field points to a direction indicating the angle (Θ) .

The interference field is introduced, and the worst-case scenario is when $B_{INTERFERENCE}$ is orthogonal to B_{TARGET} .

The result is a vector addition of $B_{INTERFERENCE}$ with B_{TARGET} , and the angular deflection is calculated as arctan($B_{INTERFERENCE} / B_{TARGET}$)

Field Strength Examples

The amplitude of the interfering field depends on a few different factors:

- Permanent magnet size, material, and shape
- Current density in a nearby conductor
- Distance from the interference source to the sensor element

	Neodymium			Ferrite			Current-Carrying Conductor		
Distance (mm)	d = 5mm	d = 10mm	d = 20mm	d = 5mm	d = 10mm	d = 20mm	l = 30A	l = 50A	I = 100A
1	100	152	182	32.1	48.8	58.4	6	10	20
10	2.8	14.7	52.4	0.9	4.7	16.8	0.6	1	2
20	0.5	2.9	15.4	0.2	0.9	4.9	0.3	0.5	1
50	0	0.2	1.7	0.0	0.1	0.5	0.12	0.2	0.4

	Neodymium			Ferrite			Current-Carrying Conductor		
Distance (mm)	d = 5	d = 10mm	d = 20mm	d = 5mm	d = 10mm	d = 20mm	l = 30A	l = 50A	l = 100A
1	73	79	81	47	58	63	11	18	34
10	5	26	60	2	9	29	1	2	4
20	1	6	27	0	2	9	1	1	2
50	0	0	3	0	0	1	0	0	1

Methods of Shunting External Fields

Conventional Core

Large Air Gap Core ("Shield")

MPS's Differential Hall-Based Sensing

Differential Position Sensing

Gradient Immunity

$$\mathsf{B}_{\text{measure}} = 2B_2 - B_1 - B_3$$

Automotive: ASIL-D Electronic Power Steering (EPS)

Motion Control and Position Sensing

- Application: Electronic Power Steering (EPS)
- Features/Benefits:
 - Wide Operating Temp Range: -40°C to +150°C
 - $_{\odot}$ Available in AEC-Q100 Grade 0/1
 - ASIL-D Solution:
 - MAQ79010FS

Recommended Products

MAQ79010FS

12-Bit Automotive Differential Angle Sensor with SPI Output. Includes Magnetic Field Diagnostics

Example Application – 3 Phase Current Sensing

MCS1810	MCS1812		MCS1814	
IP+ 1 0 NC 0 ND 0 ND	P+ 1 P+ 2 P+ 3 P+ 4 P. 6 P. 6 P. 7 P. 8	18 NC IP+ 15 GND IP+ 14 NC IP+ 13 VREF IP+ 12 VOUT IP- 11 OCDREF IP- 10 VCC IP- 10 VCC IP- 10 VCC IP-	1 0 16 N 2 15 0 3 14 V 4 13 % 6 12 V 8 11 N 7 10 V 8 0 0	C CREF CC DCD OUT C REF ND

Industrial Inverter

- Application: Motor Drive, UPS, Energy Generation
- Requirements:
 - Wide Operating Temp Range:
 -40°C to +125°C
 - $_{\odot}$ Isolation from Bus Voltage
 - o High Accuracy

MCS(Q)1810/12

- Up to ±100ARMS
- Configurable OCD (1µs Response Time)
- Zero-Current Reference Output VREF
- ±1.5% Total Error
- AEC-Q100 (MCQ181x)

Thank You

For more information, contact: sensors@monolithicpower.com

Check out our Sensor Solutions brochure at MonolithicPower.com

Thank You ted.smith@monolithicpower.com

