EMC Insights and Solutions: DC/DC Converter EMC Troubleshooting

Livonia, MI EMC Lab

April 2022

Presenter Intro: Mark Malik

- Senior FAE supporting automotive OEM and Tier 1 customers in the Midwest region, based out of Livonia MPS office
- 20 years of experience in semiconductor field support, automotive/military hardware design and automotive OEM system level design
- Recently supporting OEM, Tier 1/2 customers with analog hardware design: power supplies, SERDES, motor control, LED control
- Passion for electronics and solving problems (that sometimes do not exist)
- Outside of work: married with children, snowboarding, electronics and other DIY activities

Approach to EMC Failure Troubleshooting

Tools for EMC Troubleshooting

Basics on Making Electrons Behave

Examples with MPS Evaluation Boards

Inductor Impact on EMC

Structured Troubleshooting:

- Which EMC test is failed by DUT? (Radiated/Conducted Emission)
- Or Immunity?
- What does the test set-up look like?
- Housing: metal or plastic?
- Are cables connected to the system?
- At which frequency does the DUT exceed the limits?
- Is it possible to identify the source clock(s)?
- Where are the DC/DC converters placed in the system?

Structured Troubleshooting:

- Are filter elements placed at each cable?
- What is the distance from DC/DC to the cable/connector?
- Identify and mark all high dV/dt and dI/dt circuit nodes!
- Check the routing of those circuit nodes for potential coupling!
- Use snap-on ferrites on cables, try to distinguish CM and DM noise!
- Place shielding over DC/DC converter block

Tool Set for Troubleshooting:

- Copper Foil: Used to create a shielding around certain areas or devices, modify ground. Low cost and versatile.
- Snap-on Ferrites: Used to create impedance to high frequency signals travelling along a cable. Low cost, not as versatile.
- Field Probes: Used to identify areas of relatively high field strength on a circuit board. Note: identifying areas of high field strength may does not guarantee finding the source of the EMC problems, but those areas are much more likely to be causing problems than not. Medium cost and versatile.
- Current Probes: Can be used in conjunction with spectrum analyzer to look at differential and common mode currents. Can be useful to distinguish between common/differential modes. High cost, not as versatile.

Use Snap-on Ferrite

Field Probes

H and E Field probes

They can be used with Scope, Spectrum Analyzer or EMC Receiver

Basics on EMC

- A moving charge generates an electromagnetic field remember the Right Hand Rule
- Charges moving in opposite directions create opposing fields which cancel
- An electromagnetic field applied to a conductor causes free, charged particles to move
- Rise and fall times affect frequency content and amplitude 5ns versus 10ns can be ~100 times different at 100MHz
- Drift Velocity of electrons in 18AWG wire with 1A current is approximately 74 $\frac{\mu m}{s}$
- Emissions: 20dBµV \rightarrow 200nA into 50 Ω , Immunity: 0.2V \leftarrow 200nA into 1M Ω
- If every charge that leaves a source gets back to the source using the smallest possible path/loop, it will be a boring day in the ALSE chamber

Basics on EMC

Case #1 – For every charge moving to the right there is a charge moving to the left

Refresh: Buck Converter Voltage and Current Waveforms

....and Boost Converter is just an mirror image.

Refresh: Boost Converter Voltage and Current Waveforms

CE FM Band Common Mode Noise

Buck converter 13V input running at 2MHz Drives ~260mV at 100MHz at SW

OEM AV Limit: $12dB\mu V$ which is $4\mu V$ at 50Ω input of EMI receiver Current flowing in this AC loop at 100MHz has to be below 80nA

Identify the source:

Are discrete frequency lines above the limit or "mountains"? Try to identify the source.

Identify the source:

Which clocks are used in the system? Measure exact frequencies of all clocks. Create a table with the clocks, harmonics and mixing products.

	f1 [MHz]	f2 [MHz]	f2 - f1 [MHz]	f1+f2 [MHz]	f3 [MHz]	f3 + f1 [MHz]	f3 - f1 [MHz]
Fsw	0.489	1.93	1.441	2.419	20.03	20.519	19.541
2x	0.978	3.86	2.882	4.838	40.06	41.038	39.082
3x	1.467	5.79	4.323	7.257	60.09	61.557	58.623
4x	1.956	7.72	5.764	9.676	80.12	82.076	78.164
5x	2.445	9.65	7.205	12.095	100.15	102.595	97.705
6х	2.934	11.58	8.646	14.514	120.18	123.114	117.246
7x	3.423	13.51	10.087	16.933	140.21	143.633	136.787
8x	3.912	15.44	11.528	19.352	160.24	164.152	156.328
9x	4.401	17.37	12.969	21.771	180.27	184.671	175.869
10x	4.89	19.3	14.41	24.19	200.3	205.19	195.41
11x	5.379	21.23	15.851	26.609	220.33	225.709	214.951
12x	5.868	23.16	17.292	29.028	240.36	246.228	234.492
13x	6.357	25.09	18.733	31.447	260.39	266.747	254.033

Try to find the path:

- Increase Input Filter capacitors by 2x
- Increase Input Filter Coil by 2x
- What is the distance between Buck C_{IN} and Filter?
- Is an OFF Board Filter effective?

Large boards with many DC/DC power supplies:

Several DC/DC Buck at one large Power Rail

Several DC/DC Buck at one large Power Rail

Several DC/DC Buck at one large Power Rail

MPS Example #1: 5A Buck Fsw=2MHz

Top Layer

"T" Capacitor Versus "I" Capacitor Design

MPQ43xx 5V 5A Buck 2.2MHz with SSFM

Input Filter on Bottom

Input L, C Filter – simplified 1-Stage vs. 2-Stage

Input EMC	Filter: Sin		=Enter your parameter				
Single Stage	Fundamental		1st Harm	2nd Harm	3rd Harm	4th	5th
Fsw:	2.20	MHz	4.40	6.60	8.80	11.00	13.20
Omega-Fsw	13.82 1/µs		27.65	41.47	55.29	69.11	82.94
L_single:	0.33	μH					
XL:	4.56	Ohm	9.12	13.68	18.25	22.81	27.37
C-effective:	0.70	μF					
XC:	0.10	Ohm	0.052	0.034	0.026	0.021	0.017
Damping	-33.09	dB	-44.99	-52.00	-56.99	-60.86	-64.03
Two stage filter design:							
1st L:	0.10	μH					
XL:	1.38	Ohm	2.76	4.15	5.53	6.91	8.29
1st C:	0.60	μF					
XC:	0.121	Ohm	0.060	0.040	0.030	0.024	0.020
Damping 1	-21.91	dB	-33.42	-40.36	-45.32	-49.18	-52.33
2nd L:	0.10	μH					
XL:	1.38	Ohm	2.76	4.15	5.53	6.91	8.29
2nd C:	0.40	μF					
XC:	0.181	Ohm	0.090	0.060	0.045	0.036	0.030
Damping 2:	-18.73	dB	-29.99	-36.88	-41.82	-45.67	-48.82
Total Damping:	-40.65	dB	-63.40	-77.23	-87.13	-94.84	-101.16

Simplified calculation: 20 log (Xc/(Xc + XL)) at Fsw, 2x Fsw etc...

- Murata has a filter simulator as part of their SimSurfing Suite
- Circuit simulation can also be done

Reduced Input Filter for 2MHz with SSFM

This filter has ~ 33dB damping at 2.2MHz

CIN3/4= 470nF 0603

CE Test without and with reduced Input Filter

Not good enough in FM band

Top Layer - modification

MPS

XAL5030 1 μ H in both directions

Replace XAL5030-1 μ H by XAL4020-1 μ H

MPS

Add 4.7 Ω Into BST Circuit

Effective above 90MHz В3 /υ αвμν R-Bst R6 60 dBµV C4 0.1uF 0603 1.3 50 dBµV \sim BST 1uH . św 40 dBµV level Average below 10dBµV now! 30 dBµV 20 dBµV م الطلقينية من بعد بالطلاقية 10 dBµV 0 dBµV 30 MHz 40 MHz 50 MHz 60 MHz 70 MHz 80 MHz 90 MHz 100 MHz 108 MHz Frequency TL 81000 2018-03 AN class 5 Peak TL81000 2018-03 AN class 5 Average Peak/120kHz Peak/120kHz (#1) Average/120kHz _____ Average/120kHz (#1) ۵ Data Reduction

MPS Example #2

Circuit Modification

As large load resistor (Antenna!) is directly connected to Booster Output, the first modification was an L,C output filter.

Original MPS EV Board and modified board

Initial MAPI4020 I_{RMS}=8A and 8mΩ 4x4x2mm size AT2010-R68 2x1.6x1mm 41m Ω I_{RMS}=3.5A; I_{SAT}=4.9A

CE Average Test with OEM Limit

3 - VHF

Power Inductors

305

Power Inductor share the same schematic symbol...

And also the EMC performance differs a lot!

MPS Case #3: More about Power Inductor and EMC

Panasonic; TDK RLF and SLF; Toko D104/124; Epcos & Vishay IHLP4040

Dot on coil indicates Start of Winding (SoW)

Molded inductor WE LHMI 10mm x 10mm

TDK SLF12575 SoW at Switch

Epcos Coil with MnZn Core SoW at SW (Pink) and SoW at Vout (green) The core of this MnZn coil is conductive, this might be the reason for better Result with SoW at Vout.

Dimensions in mm

Example Drawings from Murata, TDK and ABC

SW-node contact plate removed:
Winding soldered directly to PCB.
6 dB lower emissions at 1MHz
In Monopole Antenna Test

4.5mm height contact plate act as E-Field antenna for SW-node high dV/dt. Optimum coil should have SW-contact at the bottom.

RE Monopole Test 0.1MHz to 30MHz

RE Monopole Test 0.1MHz to 30MHz

MPS Example #5:

MPS Example #5:

- Additional tests with Snap-ON Ferrite: No Improvement!
- Test with off Board EMC Filter: No Improvement!
- Copper Foil around circuit: some improvement!
- Add "Y"-Capacitor 2.2nF between primary and secondary GND shows strong improvement
- Additional circuit and Layout changes mainly on secondary needed.

Conclusion:

- Check EMC filter structure for effectiveness
- Review PCB layout for high di/dt circuit nodes: Loops have to be minimized!
- Review layout and components connected to high dV/dt nodes:

High dV/dt area should be small and low profile!

- Try different inductors. Usually smaller and lower profile types radiate less.
- If distance between DC/DC and cable/connector is to small, use a local shield on top of DC/DC circuit.

On-Demand Webinars: www.monolithicpower.com/webinars

