Automotive 48V and MPS Solutions

Jeff Zhou

2025.8

Automotive 48V Market Entering Mainstream

Higher power required by EVs

Increasing Load Power:

Drive-by-Wire

~2kW

 Higher Power SoC (ADAS, Cockpit, Al Box...)

~1kW

Active Suspension System

~1-2kW

...

48V is necessary!

Data source: Tesla

Lower power loss/weight/cost

600W Load Example

12V

48V

>>80% Smaller size

50 Amps

12.5 Amps

10 mm²

1.5 mm²

>>> 80% Weight reduction

108 grams/meter

17 grams/meter

>> 50% Less loss in wiring

4.5 Watts/meter

1.9 Watts/meter

Why not higher than 48V?

- 1) GB/T18384.3
 - 4 电压等级

UNITED NATIONS

根据最大工作电压 U,将电气元件或电路分为以下等级,如表 1 所示。

表 1 电压等级

单位为伏

电压等级	最大工作电压	
	直流	交流(rms)
A	0 < U ≤ 60	0 < U ≤ 30
В	60 < U ≤ 1 500	30 < U ≤ 1 000

- 2) ECE-R100.03
 - 2.42. "Specific voltage condition" means the condition that the maximum voltage of a galvanically connected electrical circuit between a DC live part and any other live part (DC or AC) is ≤ 30 V AC (rms) and ≤ 60 V DC.

Note: When a DC live part of such an electrical circuit is connected to chassis and the specific voltage condition applies, the maximum voltage between any live part and the electrical chassis is $\leq 30 \text{ V AC (rms)}$ and $\leq 60 \text{ V DC}$

- 60V DC is a safety limit voltage for human;
- If higher than 60V DC bus, insulation or isolation needed to be considered in design

48V EV Structure & Zonal Control Unit

Architecture of 48V System-Zonal

- ZCUs are classified by position;
- Short wire: low cost, light weight, simple assembly;
- Safety: key components have redundant power;

Architecture of 48V Zonal Control Unit

48V to 12V DCDC in ZCU

48V ZCU High Power DCDC Requirement

- Small Size and high power
- ➤ High efficiency need up to 97%
- Bi-directional operation
- Output has no risk to see 48V
- Build in soft startup
- Rich protection

Topology for High Power DCDC

Multi-Phase Buck

Switch cap

Hybrid buck

Open Loop LLC

Small Size and high power

Bi-directional operation

Output has no risk to see 48V

Build in soft startup

Rich protection

Small Size and high power

High efficiency need up to 97%

Bi-directional operation

Output has no risk to see 48V

Build in soft startup

Rich protection

Rich protection

High efficiency need up to 97%

Small Size and high power

X

Output has no risk to see 48V

X

Build in soft startup

Bi-directional operation

Rich protection

Small Size and high power High efficiency need up to 97% Bi-directional operation Output has no risk to see 48V Build in soft startup

Open Loop LLC topo is the best solution for the ZCU power supply

MPS LLC Power DCX

Soft switching: ZVS+ZCS

- High efficiency, high power density, low EMI
- Primary mos damage, secondary output can't see high voltage

MPC1230X

70V Non-Isolated/Isolated LLC-DCX

Features

- The power converter kit is a high-efficiency non-Isolated converter with a fixed 4:1 voltage ratio, operating from a 20-70V DC primary bus to 5-18V output voltage, and can deliver up to 1kW continuous power at a typical 48V input voltage
- Support up to 400W, 1,000W continuous power
- Fixed 2MHz or 470kHz switching frequency
- Support parallel connection of 3 kits to 3kW
- Built-in MTP
 - Soft-start
 - Programmable Input OVP/UVLO
 - Programmable Output OVP/UVP
 - Programmable OCP
 - Programmable OTP
- Power Good

Comprehensive diagnostic functionality

- Input and Output Voltage, Output Current, and Temperature Protection
- · Input and Output Voltage, Output Current, and Temperature Monitoring

Robust Communication

• Support up to 1MHz frequency of I2C

Benefits of LLC converter kit:

- · High Efficiency and High Power Density
- Bi-Directional Operation
- High Peak Power Capability
- ASIL B solution
- Low Iq mode

Thermal Enhanced 80V/40V Half Bridge & SR

- 85V /135A
- 40V/ 110A
- Ron: 3.6mohm/3.3mohm
- Thermal resistance: Rja=3.25C/W (with heatsink)
- DFN-8 5mmx6mm

Tuned 80V Driver IC

- Vin: 10V To 80V
- Driver: 2MHz operating frequency
- Ultra Fast
- QFN-10 4mmx4mm

Integrated Resonant Transformer

- Integrated Lm and Lr
- · Optimized core loss, winding loss and rectifier loss
- SMT & Compact size
- 19.2mmx19.2mm

Tuned Control IC

- · Tuned frequency for resonant
- Tuned the dead time for soft switching
- Rich monitoring & protection
- QFN-24 4mmx4mm

MPS LLC Power DCX

Thermal Performance

Build in Soft start

Bi-direction operation

Peak Power Capability

MPS LLC Power Block Module

Single Block can support 500W/800W

MPS LLC Power Block Module

Top Side

Bottom Side

Power Block module Size is 30mm*30mm

48V of High Power SoC based ADAS/IVI

Evolution of SoC Core Power

Per Second) (Tera Operations TOPS

Up to 20 TOPS

10-30 Watts QM / ASIL B

< 30A

Point-of-Load Bucks

Standard Digital Cockpit, or IVI / L2 ADAS

50-500 TOPS

15-100 Watts ASIL B / D

< 200A

Controller + DrMOS

Premium Digital Cockpit, or L2+ / L2++ / L3 ADAS

500-2000+ TOPS

100-250+ WattsASIL D

> 200A

Controller + DrMOS

Power Modules

Ultra-Premium Digital Cockpit, and L4 / L5 Autonomous Drive

48V SoC Application

- For 48V Adas, it must use 2 stage power supply
- How to design the middle voltage and how to select primary regulator?

48V SoC Application

MPS can provide full solution for both structure

Efficiency Comparison

48V Solution Efficiency Comparison
VIN = 48V; VOUT = 0.75V; 1-ph for 1-Stage; 3-ph for 2ndStage

48V-to-0.55V Overall Efficiency

VIN = 48V; VOUT = 0.55V; 3-ph for 1st Stage; 8-ph for 2nd Stage

- > 48V system thermal and efficiency is key factor
- > 5V intermediate bus introduce the highest overall efficiency for 48V-to-core rail conversion

·48V-12V-0.75V ·48V-5V-0.75V

If select better primary 48V regulator, 48V->5V efficiency can improve a lot

Better 48V Primary Regulator (3-level Buck)

- 4 switching devices along with 1 flying capacitor are used to form a 2-phase converter.
 - o 2 HS FETs + 2 LS FETs
- ½ VIN on the flying capacitor at steady state
- ½ VIN on LS1, and LS2 → Lower voltage rated device could be used
 - o Higher efficiency
 - More compact design

Better 48V Primary Regulator (3-level Buck)

Digital Controller: MPQ2926x

QFN-24

4mm × 4mm with 0.5mm pitch

Intelli-phase[™] 65V DrMOS: MPQ867xx

QFN-22

5mm × 6mm with 0.5mm pitch

Efficiency Comparison (VOUT = 5V)

- 3 phase buck
 - o HSFET: 32 mΩ
 - o LSFET: 4.5 mΩ
 - Inductor: VCUD128T-2R5MS8
- MPS 48-5V 3-Level Converter
 - o MPQ29xxxx
 - o MPQ86xxxx

3-level converter realizes higher efficiency than multiphase buck solution

- >1.5% higher for peak efficiency
- >2% higher at heavy load

3 level buck 48V->5V-VR Solution

- 50% output capacitor reduction
- 23% PCB layout area reduction

MPS Solution: 50mm × 21mm + 8mm × 7.5mm = 1110mm²

Benchmark Solution: 40mm × 30mm + 12mm × 10mm × 2 = 1440mm²

Thanks

