MPS 新一代磁角度传感器MA600介绍与应用

Dec 2022

rev 20180504

Content

- MPS Magnetic Angle Sensor Product Line Introduction
 - Block diagram
 - $\circ\,$ Road map
- Main Features of MA600
 - \circ Resolution
 - \circ Bandwidth
 - \circ INL
 - \circ Latency
- MA600 Application and Design Note
 - End of shaft
 - $\circ\,$ Side of shaft
 - BCT compensation
 - \circ User calibration

MagAlpha[™] Generic Block Diagram

MagAlpha[™] Advantages

100000

Position Product Portfolio

Automotive AEC1 & ASIL Compliant Position Sensors

MagAlpha™ (Motors, Rotary Encoders)	MAQ430 12-bit, SPI, UVW 1 to 8 Pole-Pair Emulation 150°C, AEC1	MAQ470/3 14-bit, SPI, ABZ 1 to 1024 Pulse Per Revolution 150°C, AEC1	S: Now; P: Q1 23 MAQ600 14.5-bit, 0.5°(0.1°) INL No Latency, High BW SPI, SSI, UVW, ABZ, PWM Selectable Outs		S: 2024 TMR MAQ650 Gen2 3.3V, 5V 18-bit No Latency, 0.3° INL High BW
MagAlpha™ (Contactless HMI)			S: Now: P: Q4 22 MAQ8x0 8-bit SPI, SSI, ABZ, PWM; 1.64 ppr 150°C, AEC1 Dial & Push Button		
MagDiff™ MagProfile™				S: Q2 23; P: Q1 24 MAQ79010 MPSafe 12-bit, Differential; Immune to Stray Fields flexible Interface 150°C ASIL B(D) Compliant	S: Q3 23; P: Q2 24 MPSafe MAQ79xxx 12-bit, Linear & Angular Motion Multi-Pole Pair ASIL B(D)
MagVector™ (3D Position Sensors)			S: Now; P: Q4 23 MVQ300 3D Magnetic Sensor, Comp Out 12-bit Data I ² C, SPI 125°C, AEC1 Component Out w/ Temp Sensor		
		Released	Newly ReleasedSameMPSafe= Functional Safety	npling Pre	

What Technology Goes Where?

 One sensor area on silicon (Orthogonal Vertical Hall Devices) Detects rotary movements Allows Push-button (except MA600) Applicable for end-of-shaft and side-shaft applications Allows Push-button Allows Push-	MagAlpha™	MagDiff™	MagProfile™	MagVector™
 One sensor area on silicon (Orthogonal Vertical Hall Devices) Detects rotary movements Allows Push-button (except MA600) Applicable for end-of-shaft and side-shaft applications Four sensor on corners of silicon for max separation (Planar hall elements) Differential measurement for sensors in opposite corners Detects rotary movements Detects rotary fields Detects rotational movement Detects rotational movement 				
applications only	 One sensor area on silicon (Orthogonal Vertical Hall Devices) Detects rotary movements Allows Push-button (except MA600) Applicable for end-of-shaft and side-shaft applications 	 Four sensor on corners of silicon for max separation (Planar hall elements) Differential measurement for sensors in opposite corners Detects rotary movements Eliminates homogenous magnetic stray fields Allows Push-button Applicable for end-of-shaft applications only 	 Sensor elements in a row on silicon (Planar hall elements) Differential measurement possible – possibility to eliminate homogeneous magnetic stray fields Detects linear movements Detects rotational movement 	 One Sensor area on silicon Detects field strengths in each direction (x-y-z) Requires external processing to determine movement/angle

Magnetic Field Direction Sensed
 Sensing Motion Detected

Main Features of MA600

What is resolution?

Metrology: Measurement Error

Measurement error:

Random Error - Why 6σ ?

 \pm 3 σ means 99.73% of the time, the angle read is within \pm 3 σ of the mean.

0.27% of data are out of the +/- 3 σ range

Definition of Resolution

Criteria: if |pos2 - pos1| > resolution then with 1 measurement you can answer the question "is the system at position 1 or 2?" correctly 99.73% of the time

assuming that the digital steps are finer than the noise

This is the analog of the *noise free code resolution* used for AD converters.

It is equal to the number of **stable bits**:

For an **angle sensor** $full scale = 360^{\circ}$ therefore,

• 15 bit representation of absolute angle value on the output (resolution of 0.01°)

Because $\log_2 \frac{360}{0.01} = 15.1$ This is the digital grid, not the resolution!

- In this example the "resolution" in the EC table is not available
- Use RMS noise shown in EC table

1) Not subject to production text, varified by design/observatorization

• Resolution is calculated with $log_2 \frac{360^\circ}{6\sigma}$, where $6\sigma = 6 \times 0.05^\circ$

Actual Resolution is 10.2 bits, not 15 bits

Competitor B

• In this example, resolution is only given as the internal ADC resolution

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
ADC Resolution on the raw	RADC	Slow Mode ⁽¹⁰⁾		15		bits
signals sine and cosine		Medium Mode(10)		14		bits
		Fast Mode ⁽¹⁰⁾		14		bits
I	1		i	1	i	i
Output stage Noise		Ciamped Output		0.00		70 V UU
Noise pk-pk ⁽¹⁴⁾		VG = 9, Slow mode, Filter=5		0.03	0.06	Deg
		VG = 9, Fast mode, Filter=0		0.1	0.2	Deg
			• •	-	. .	~~~

• Resolution is calculated with $log_2 \frac{360^{\circ}}{6\sigma}$, where 6σ is pk-pk noise = 0.03°

Actual Resolution is 13.6 bits, not 15 bits

Resolution Performance

τ = 16 ms 13 t =8 ms $\tau = 4 \text{ ms}$ EFFECTIVE RESOLUTION (bit) 12 τ = 2 ms τ = 1 ms 11 τ = 512 μs τ = 256 µs 10 τ = 128 μs τ = 64 μs 20 60 80 100 120 0 40 MAGNETIC FIELD (mT)

Effective Resolution (3σ)

MA732 (Hall based)

What resolution influence:

- 1. Position error
- 2. In servo motor control, high frequency vibration, noisy sound

What will affect the resolution:

- 1. Magnetic field strength (not for MA600)
- 2. Internal digital filter

MA600 (TMR based)

Resolution and Bandwidth

BW – Resolution Tradeoff

Resolution (bit)

- Higher final resolution trades off bandwidth, resulting in a slower sensor
- Output bandwidth should be indicated in datasheet

How to Choose Bandwidth

Thumb rule: for dynamic response stability, the MA bandwidth should be 5-10x times than the PID bandwidth

 $f_{cutoff} > 5f_{PID}$

Even more important for multiple nested loops.

Resolution / Bandwidth Tradeoff

Resolution=14.6 bit

Resolution=13.5 bit

MA600 – Programmable Resolution & BW

Parameter	Symbol	Condition	Min	Тур	Max	Units	
Absolute Output – Serial							
Resolution ⁽⁷⁾ (±3σ deviation of noise)			12		15	bit	
RMS Noise (7)			0.002		0.015	deg	
Refresh Rate	Frefresh		780	800	820	kHz	
Data Output Length				16		bit	
Response Time							
Power-up Time (7)		FW = 0			250	μs	
Latency (7)		FW = 5-11		0	1	μs	
Filter Cutoff Frequency	Fcutoff	FW = 0		17		kHz	

Spectrum (FW = 5-11)

FW (3:0)	т (µs)	Resolution (bits)	Latency (µs)	f _{сuтоғғ} (kHz)
0	0	12.3	32	17
5 (default)	40	12.5	0	12
6	80	13	0	5.8
7	160	13.5	0	2.7
8	320	14	0	1.3
9	640	14.3	0	0.63
10	1280	14.6	0	0.31
11	2560	14.8	0	0.15
12	5120	15.0	0	0.075

INL of MPS parts: MA7XX: 1-1.2° max MA600: 0.5° max (<0.1° after user calibration)

1. Position error

2. In servo motor control, low frequency vibration

Lag

Sensor Out

Best Straight Fit

700

600

Latency

Systematic Error Sources

- 1. Integral Non-Linearity (INL)
- 2. Magnetic Misalignment with Sensor
- 3. Latency Impacts Angle Error at Speed
 - Example with a 30k RPM Motor:
 - To calculate latency error:
 - 1. Convert motor rpm to deg/sec = $RPM \times 6$
 - 2. Latency x rpm in deg/sec

Latency Error	Comp A	MA600
Latency	10µs	0µs
@30k RPM	1.8°	0°

<- Latency is not easy to be calibrated out and can be a large error source. Higher speed = higher error.

MA600 – Low INL, High Bandwidth Position Sensor

Key Specifications

- High Accuracy: 0.5° INL
 - In-system calibration: 0.1° INL
 - Includes on-chip look-up table
- High Bandwidth & Resolution: Up to 15-Bit (±3σ)
 - No Internal Hysteresis
- No Latency
 - Minimizes error at speed
- Flexible Operation to Fit Many Applications:
 - Reliable operation down to 20mT
 - Works in Side-Shaft or End of Shaft

Applications

- Robotics
- Multi-Turn Encoders
- FOC Motor Control
- 3x3mm² QFN

• Speed Sensors

MagAlpha[™] Main parameters for hallbased sensor and TMR based sensor

- Resolution: hall sensor (8-13.5bit), TMR sensor (9-15bit), with same bandwidth, the TMR sensor has almost 3bit higher resolution.
- Bandwidth: hall sensor(23Hz-6kHz); TMR sensor (150-21kHz)
- 3. INL: hall sensor < 1 $^\circ$, TMR sensor < 0.5 $^\circ$
- 4. Latency: MA732 9us; MA600 0us
- 5. User calibration function integrated in MA600
- Angle temp drift: hall sensor (0.015/°C), TMR sensor (0.002/°C)

Table 17: Filter Window

FW(7:0)	Time Const. τ (μs)	Effective Resolution at 45mT (bit)	f _{cutoff} (Hz)	Power- Up Time (ms)
51	64	9.5	6000	0.5
68	128	10	3000	1.1
85	256	10.5	1500	2.5
102	512	11	740	5.5
119 (default)	1024	11.5	370	12
136	2048	12	185	26
153	4096	12.5	93	57
170	8192	13	46	123
187	16384	13.5	23	264

MA600

MA732

FW (3:0)	т (µs)	Resolution (bits)	Latency (µs)	fcutoff ⁽¹²⁾ (kHz)
0	0	12.3	32	17
1-4		Not reco	ommended	ł
5 (default)	40	12.5	0	12
6	80	13	0	5.8
7	160	13.5	0	2.7
8	320	14	0	1.3
9	640	14.3	0	0.63
10	1280	14.6	0	0.31
11	2560	14.8	0	0.15

MA600 Applications

Factory Automation (Precision Robotics)

Robotics and Fluid Control

Electronic Power Steering

Reduce Cost with Magnetic Encoders

Optical Encoder + Motor

Magnetic Encoder + Motor

Customer Benefits

Reduce Cost 5-10x

Immune to Dust and Debris

Operates in Harsh Environments Without Costly Enclosures

End of Shaft Design Note

- Appropriate magnetic filed: 20mT-80mT is preferred for MA600
- Mechanical setup and installation should be as accurate as possible
- No magnetizable materials close to magnet

Same B_X and B_Y amplitude

Side of Shaft Design Note

- More requirements for a magnet: shape, material, well magnetized
- Find a suitable position for sensor: appropriate magnetic field strength, less magnetic distortion, need do the simulation first
- Mechanical setup and installation should be as accurate as possible
- No magnetizable materials close to magnet

http://sensors.monolithicpower.com/

Side of Shaft Design Note

Different side shaft configurations

Side

Side Top/Bottom

Side Orthogonal

Common magnet imperfections

ideal

BCT Compensation (Example)

- Ring magnet
- Diametral magnetization
- OD(outter diameter)=20mm, ID(inner diameter)=8mm, H(height)=6mm
- Material: NdFeB (Brem=1.2T)

Position 2

The imperfection of magnet is hard to be compensated by BCT

User Calibration (Example)

- 1. Adjust the zero position of the motor, make it close to the zero position of sensor
- 2. Rotate the motor with step of 11.25° , record the sensor output $out_i(deg)$ when motor turns to 0° , 11.25° , 22.5° ...until 348.75°, and get the correction value $corr_i(deg)$:

 $\operatorname{corr}_i(\operatorname{deg}) = \operatorname{ref}_i(\operatorname{deg}) - \operatorname{out}_i(\operatorname{deg})$

3. Calculate the corresponding register value $corr_i(dec)$

1) If
$$\operatorname{corr}_i(\operatorname{deg}) \ge 0$$

 $\operatorname{corr}_i(\operatorname{dec}) = \frac{\operatorname{corr}_i(\operatorname{deg})}{360} \cdot 128 \cdot 32$
2) If $\operatorname{corr}_i(\operatorname{deg}) < 0$
 $\operatorname{corr}_i(\operatorname{dec}) = \frac{\operatorname{corr}_i(\operatorname{deg})}{360} \cdot 128 \cdot 32 + 256$

Write the value into Reg32 – Reg63 accordingly

4. Store the Reg32 - Reg63 (Block1) value into NVM

Position 2 -> further calibrated

Thank You

For more information, contact: <u>sensors@monolithicpower.com</u>

Check out our Sensor Solutions brochure at MonolithicPower.com

