Challenges and early review of your design!

Why we fail in EMC and how to avoid it.

Prof. **Arturo Mediano**University of Zaragoza (SPAIN)
amediano@unizar.es

Organized by:

Nov 2021

EMI/EMC/SI Design and Troubleshooting

Congrats: what a great laboratory!

Two exciting days: ... for EMI/EMC!

DAY 1: 9th November

9:30 to 12:00 (CET) - Roots of EMI (Part 1)

- > Challenges and Early Review of Your Design! (Presented by Arturo Mediano, University of Zaragoza 45min)
- > EMC Testing from First-Level Debugging to the Compliance Stage (Presented by Christian Reimer, R&S 45min)
- > Practical and Early Testing Showcases (Presented by Jan Spindler, MPS 45min)

Register Now

13:00 to 16:30 (CET) - Roots of EMI (Part 2)

- > EMI Troubleshooting and Debugging (Presented by Arturo Mediano, University of Zaragoza 1h)
- > DC/DC Conversion Workshop DUT Troubleshooting (Presented by Jens Hedrich, MPS 1h)
- > Pre-Compliance Set-Up (Presented by Alexander Küllmer, R&S 1h)

Register Now

DAY 2: 10th November

8:30 to 12:00 (CET) - Power Applications

- > Filter Design Hints and Tricks (Presented by Arturo Mediano, University of Zaragoza 45min)
- > Stability in Converters: Control Loop & Load Step Design (Presented by Christian Kueck, MPS 45min)
- > Power Integrity Can Cause EMI Challenges (Presented by Arturo Mediano, University of Zaragoza 45min)
- > Mythbusting EMC Techniques in Power Converter Design (Presented by Francesc Estragues, MPS 45min)

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

A High Frequency Lab

for design, diagnostic, troubleshooting and training

Interferences (EMI) Electromagnetic Compatibility (EMC) Signal Integrity (SI) Radiofrequency(RF)

Contact: Arturo Mediano amediano@unizar.es www.cartoontronics.com

ASK FOR YOUR FREE CATALOG!

EMI/EMC: classification

Radiated and conducted emissions/immunity

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMI/EMC/SI Design and Troubleshooting

EMI/EMC: tests

Introduction: example failures

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMI/EMC/SI Design and Troubleshooting

It is time for failures: too late?

EMI/EMC: why it is a headache?.....

- Delays to market
 - o weeks for "easy" problems
 - months for difficult problems
- Unexpected costs(thousand \$/€)
 - redesign retesting consultants
- Need for tests (external and internal) = time + cost
- Image degradation for customer/market
- Size
- Weight
- Failures in the field (immunity)
 - Returned products because ESD, EFT, transients,
- Stress

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMI/EMC/SI Design and Troubleshooting

EMC failures: why we fail?. Some causes

% 40% 30% 20%

20%

10%

1st trial

2nd trial

3rd tria

- No time
 - o We will "do the EMC" later!
- Assume the product will pass EMC first time
 - o Companies leave EMC pass-fail at lab up to chance
 - Global EMC first time pass rate ≈ 50% ----
- Applying incorrect EMC regulations
- Use of non-compliant modules or components
- No EMC knowledge
 - Difficult subject
 - No experience/knowledge in high frequency
 - Special measurement techniques are required
 - Hidden schematic and unexpected-parasitic effects = Magic!
- Late response
 - o Start EMC analysis when customer is notified the product is finished
 - Pass the final product to the EMC engineer to "do the EMC"
 - In the meantime change the design without notification to the EMC engineer.
 - o If the product fails, put the EMC engineer to work in the weekends!
 - o If no success, do not worry, can the problem be solved by software?

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMC failures: early review!!!!

A TYPICAL "FUNCTIONAL" REVIEW PROCESS IN ELECTRONICS:

voltage and current checks	mechanical conflicts
firmware functionality	☐ symbol to footprint coherence
efficiency and stress	□ costs reviews
connector pins check	□ etc

WHY NOT TO DO SOMETHING SIMILAR FOR EMC?

Create your own design check list!

Not necessarily companies with EMC experts are doing EMI/EMC review

This presentation only includes general ideas

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMI/EMC/SI Design and Troubleshooting

EMI/EMC review: general ideas

- The EMC design review is mandatory to detect bad design practices.
- · Both emissions and immunity must be considered.
- Add experience to your design review process
- Look for the limits, levels, and tests you need to pass in emissions and immunity.
 - where you want to market your product
 - o environments: industrial, residential, etc.
 - o special requirements from customers
- Consider:
 - o technologies/packages/ICs review
 - o schematic review
 - PCB review
 - o mecahnical design review
 - o cables review
 - o firmware ideas
 - test prototypes

Example choosing switching frequency

EMI/EMC review: technologies/packages/ICs

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMI/EMC/SI Design and Troubleshooting

EMI/EMC review: schematic review

- · especially critical if PCB design is outsourced!
- · clean and documented schematics is critical
- · shielded areas
- notes/explanations

EMI/EMC review: PCB

PCB stack-up and number of layers

be careful with 1-2 layers! (typical for low cost products)

really cost 2 layers + EMI filters/components < cost 4 layers?

Number of boards in your system. Interconnection. PCB zoning/partitioning/placement

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMI/EMC/SI Design and Troubleshooting

EMI/EMC review: PCB

Component location

DC/DC converters inductors (H field)

Layout

Critical signals in edge? Avoid long traces. Avoid loops.

Distances between critical traces: safety & crosstalk Critical signals layout: RF, high speed, low level analog, resets/Enable/IRQ, I/O signals, etc. High speed layout and terminations (SI)

Desensing risks?

Transient protectors selection and placement

EMI/EMC review: PCB

DRC tool!

Ground system (planes) Slots in ground planes

Critical areas far from I/O connectors.

Decoupling and PDN design (PI)

how are the decoupling caps placed and routed? check by simulation if possible

Shields in PCB?

- agressive areas and sensitive areas
- connection to GND without slots
- filtering I/O traces (i.e. X2Y caps)

Guards

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMI/EMC/SI Design and Troubleshooting

EMI/EMC review: mechanical design (1)

Enclosure resonant frequencies

Test shielding in parallel with electronic design

Seams/slots/apertures

- · non metalic paints
- holes/ventilation far from agressive/sensitive areas
- · use of gaskets?

I/O cables filtered

EMI/EMC review: mechanical design (2)

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMI/EMC/SI Design and Troubleshooting

EMI/EMC review: cables

EMI/EMC review: firmware

VERY IMPORTANT FOR IMMUNITY

- watchdog timers
- · checkpoints, checksums, error detection/correction, ...
- · average of measured values.
- · confirm read/write in digital ports periodically
- etc.

VERY IMPORTANT FOR EMISSIONS

- Stop non used signals (i.e. accessories not connected)
- Stand-by in critical areas while not in use (i.e. clocks)
- Spread-spectrum techniques in digital and power electronics

© A. Mediano University of Zaragoza (SPAIN) · amediano@unizar.es

EMI/EMC/SI Design and Troubleshooting

EMI/EMC review: test prototypes

Pre-compliance instrumentation

THANK YOU!

Prof. **Arturo Mediano**University of Zaragoza (SPAIN)
amediano@unizar.es