Understanding Position Sensor Resolution and Bandwidth in Servo Control Loops

Webinar will begin at 11am PT | 2pm ET | 8pm Europe

Understanding Position Sensor Resolution and Bandwidth in Servo Control Loops

September 2022

rev 20180504

Advantages of magnetic angle sensing

Systematic error sources

Random error sources

How to understand the true resolution a sensor IC provides

Best ways to determine a magnetic sensor's real resolution

How dynamic bandwidth can affect your control system

Systematic Error Sources

- 1. Integral Non-Linearity (INL)
- 2. Magnetic misalignment with sensor
- 3. Latency Impacts Angle Error at Speed
 - Example with a 30k RPM Motor:
 - To calculate latency error:
 - 1. Convert motor rpm to deg/sec = RPM x 6
 - 2. Latency x rpm in deg/sec
 - Latency causes lag

Latency Error	Comp A	MA600
Latency	10µs	0µs
@30k RPM	1.8°	0°

Systematic Error Sources (Applied Example)

- 1. Integral Non-Linearity (INL)
- 2. Magnetic misalignment with sensor
- 3. Latency Impacts Angle Error at Speed
 - Example with a 30k RPM Motor:
 - To calculate latency error:
 - 1. Convert motor rpm to deg/sec = RPM x 6
 - 2. Latency x rpm in deg/sec

Latency Error	Comp A	MA600
Latency	10µs	0µs
@30k RPM	1.8°	0 °

Total Systematic Error = INL + Magnetic + Latency

- INL: usually provided in datasheet
- Magnetic Error: 0.3^o typical, end-of-shaft
- Latency Error: latency x motor speed

Total Systematic Error	Error Type	Comp A (Factory cal)	MA600 (Factory Cal)	MA600 (In-System Cal)	
INL	Static	1 ⁰	0.5°	0.1 ^o	
Magnetic	Static	0.3º	0.3°	0°	
Latency	Dynamic	1.8º	0 ⁰	0°	
Total Error		3.1°	0.8 ⁰	0.1°	

Summary:

• Latency <u>cannot</u> be calibrated out and can be a large error source. Higher speed = higher error.

Random Error Sources

1. Noise

- Resolution captures impact from noise
- Noise can be reduced by filtering, but this reduces sensor bandwidth
- Sensor bandwidth impacts loop stability
- Consider Resolution <u>AND</u> Bandwidth
- When sensor BW is too low, it can look like angle error
- Challenges:
 - 1. Determination of the real resolution of a sensor
 - 2. Understanding the relationship between resolution & BW

Resolution / Bandwidth Tradeoff

14.3 bits

13.2 bits

What is Resolution?

Metrology: Measurement Error

Measurement error:

Random Error - Why 6σ ?

Peak-peak noise: 99.73%

0.27% of data are out of the +/- 3 σ range

Definition of Resolution

Criteria: if |pos2 - pos1| > resolution then with 1 measurement you can answer the question "is the system at position 1 or 2?" correctly 99.73% of the time

assuming that the digital steps are finer than the noise

For an **angle sensor** $full scale = 360^{\circ}$ therefore,

Resolution in bits =
$$\log_2 \frac{360^\circ}{6\sigma}$$

Resolution and Bandwidth

- Output bandwidth should be indicated in datasheet
- Higher final resolution trades off bandwidth, resulting in a slower sensor

Filter transfer function shown in the datasheet

Filter Window Tradeoff

Sange Filter Window

Filter Window Tradeoff

Sange Filter Window

General Guideline: for stability, the sensor time constant should be **10x smaller (i.e., 10x >BW)** than the PID time constant:

$$\tau < 10 \frac{k_p}{k_i}$$

Even more important for multiple nested loops such as field oriented control.

More About Sensor Resolution Bandwidth

BW – Resolution Tradeoff

Resolution (bit)

- In this example the "resolution" in the EC table is not available
- Use RMS noise shown in EC table

1) Not subject to production text, varified by design/obsractorization

• Resolution is calculated with $log_2 \frac{360^\circ}{6\sigma}$, where $6\sigma = 6 \times 0.05^\circ$

Actual Resolution is 10.2 bits, not 15 bits

Competitor B

• In this example, resolution is only given as the internal ADC resolution

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
ADC Resolution on the raw	RADC	Slow Mode ⁽¹⁰⁾		15		bits
signals sine and cosine		Medium Mode(10)		14		bits
		Fast Mode ⁽¹⁰⁾		14		bits
1	i	1	i	ł	i	i
Output stage Noise		Ciamped Output		0.05		70 V UU
Noise pk-pk ⁽¹⁴⁾		VG = 9, Slow mode, Filter=5	(0.03	0.06	Deg
		VG = 9, Fast mode, Filter=0		0.1	0.2	Deg

- Resolution is calculated with $log_2 \frac{360^{\circ}}{6\sigma}$, where 6σ is pk-pk noise = 0.03° Actual Resolution is 13.6 bits, not 15 bits (slow mode)
 - Fast mode is, of course, even lower resolution: $log_2 \frac{360^{\circ}}{6\sigma}$ pk-pk noise = 0.1° Actual resolution = 11.8 bits

MA600 – Resolution and Bandwidth Defined

Parameter	Symbol	Condition	Min	Тур	Мах	Units
Absolute Output – Serial						
Resolution ⁽⁷⁾ (±3σ deviation of noise)			11.5		14.5	bit
RMS Noise (7)			0.002		0.02	deg
Refresh Rate	F _{refresh}		780	800	820	kHz
Data Output Length				16		bit
Response Time						
Power-up Time (7)		FW = 0			250	μs
Latency ⁽⁷⁾		FW = 5-11		0	1	μs
Filter Cutoff Frequency	F _{cutoff}	FW = 0		21		kHz

Spectrum (FW = 5-11)

FW (3:0)	т (µs)	Resolution (bits)	Latency (µs)	f _{сuтоғғ} (kHz)
0	0	11.5	32	21
5 (default)	40	12.0	0	13.1
6	80	12.5	0	6.0
7	160	13.2	0	2.8
8	320	13.6	0	1.3
9	640	14.0	0	0.63
10	1280	14.3	0	0.31
11	2560	14.4	0	0.15

Reduce Cost with Magnetic Encoders

Optical Encoder + Motor

Magnetic Encoder + Motor

Customer Benefits

Reduce Cost 5-10x

Immune to Dust and Debris

Operates in Harsh Environments Without Costly Enclosures

MA600 – Higher Bandwidth, Higher Resolution in Magnetic Angle Sensing

Key Specifications

- High Accuracy: 0.5° INL
 - In-system calibration: 0.1° INL
 - Includes on-chip look-up table
- High Bandwidth & Resolution: Up to 14.5-Bit (±3σ)
 - No Internal Hysteresis
- No Latency
 - Minimizes error at speed
- Flexible Operation to Fit Many Applications:
 - Reliable operation down to 20mT
 - Works in Side-Shaft or End of Shaft

Applications

- Robotics
- Multi-Turn Encoders
- FOC Motor Control
- Speed Sensors

Thank You ted.smith@monolithicpower.com

