

Analysis and Suppression of Conductive and Radiated Electromagnetic Interference for Flyback Converters

(Aug. 21th, 2025)

Shuo Wang, University of Florida Gainesville, FL 32611

Note: Please cite our work/papers when you publish or share the related work, it is very important to us as it means respect to our contributions

Popular Flyback Converter Topologies

Flyback Converter with Synchronous Rectifiers / Diodes

Active Clamped Flyback Converter with Synchronous Rectifiers / Diodes

Conductive EMI

Conductive EMI:

- 1) Differential Mode (DM) EMI analysis
- 2) DM EMI suppression
- 3) Common mode (CM) EMI analysis
- 4) CM EMI suppression

Conducted EMI

EMI noise source & propagation path modeling

Component parasitic modeling

Near-field coupling modeling

EMI noise source reduction

Component and filter optimization

Parasitic & coupling mitigation

Radiated EMI

Radiated EMI:

- 1) Radiated EMI Analysis
- 2) Radiated EMI suppression

HF noise source modeling

Radiation mechanism modeling

Modeling

Component parasitic modeling

AC-line DM EMI Filters vs DC-bus DM EMI Filters

DM EMI, CM EMI and Line-frequency Currents of Flyback Converters

Flyback Converter's DM EMI Filter Selection based on Linefrequency Currents

AC line filter topology

DC-bus DM EMI Filter Size vs AC-line DM EMI Filter Size

Component	AC Line Filter			DC Bus Filter		
	Value	PCB Size (mm ²)	Volume (mm^3)	Value	PCB Size (mm ²)	Volume (mm^3)
DC Capacitor	68μF	320	4000	2 * 33μF	312	4410
X Capacitor	$0.1 \mu F$	90	850	N/A	N/A	N/A
DM Inductor	100μΗ	72	860	22μΗ	50	350
Total		482	5710		362	4760

Conclusion: The size of a DC bus filter in a flyback converter is much smaller than that of an AC line filter.

Further Improving DC-bus DM EMI Filter Design

AC Line Filter	Size (mm^2)	Volume (mm ³)
0.47uF/275VAC Film X Capacitor	180	2898
300uH Inductor, High Flux Core	148	2133
Total	328	5031

DC bus Filter	Size (mm^2)	Volume (mm^3)
1.0uF/630VDC X7R DM Capacitor	30	165
300uH Inductor, MPP Core	52	327
Total	82	492

Conclusion: Both the volume and cost of DC filters are much lower than those of AC filters.

DM EMI Noise due to Diode Bridge Reverse Recovery

[2] Z. Ma, Y. Li, S. Wang, H. Sheng, and S. Lakshmikanthan, "Investigation and Reduction of EMI Noise Due to the Reverse Recovery Currents of 50/60 Hz Diode Rectifiers," *IEEE Journal of Emerging and Selected Topics in Industrial Electronics*, vol. 3, no. 3, pp. 594-603, 2022.

High DM EMI Noise with a 50/60Hz diode Bridge

Voltage Spikes on LISNs due to Diode Reverse Recovery

Measured spikes in time-domain at the output of a DM Noise Separator

12

Operating Principle of A Spectrum Analyzer

Many Orders of 50/60Hz Harmonics Contribute to Measured High DM EMI at a Single Frequency

[3]: L. Yang, S. Wang, H. Zhao and Y. Zhi, "Prediction and Analysis of EMI Spectrum Based on the Operating Principle of EMC Spectrum Analyzers," in *IEEE Transactions on Power*14

Electronics, vol. 35, no. 1, pp. 263-275, Jan. 2020, doi: 10.1109/TPEL.2019.2914468.

Shuo Wang @

DM EMI Suppression Solutions

- 1) Add a X-cap: Cx to filter out HF harmonics
- 2) Use fast recovery rectifier diodes to eliminate the effects of reverse recovery currents

CM EMI Noise due to Switching Transformers

[4] Y. Li, H. Zhang, S. Wang, H. Sheng, C. P. Chng, and S. Lakshmikanthan, "Investigating Switching Transformers for Common Mode EMI Reduction to Remove Common Mode EMI Filters and Y-Capacitors in Flyback Converters," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 6, no. 4, pp. 2287-2301, 2018

CM EMI Model of Switching Transformers

[5] H. Zhang, S. Wang, Y. Li, Q. Wang and D. Fu, "Two-Capacitor Transformer Winding Capacitance Models for Common-Mode EMI Noise Analysis in Isolated DC–DC Converters," in *IEEE Transactions on Power Electronics*, vol. 32, no. 11, pp. 8458-8469, Nov. 2017.

Transformer Design to Suppress CM EMI

- 1. The adjacent windings between the primary and secondary should have small voltage difference
- 2. A cancellation winding can be used to generate reverse currents to cancel CM currents
- 3. An external cancellation capacitor can be used across primary and secondary to cancel CM currents

CM EMI Noise due to Near Electric Field Couplings

A Flyback Converter with A DC Bus Filter

(Coupling with the Electrolytic Capacitor's Metal Shell)

Electrolytic capacitor's metal shell couples to $N_{C:}$ $C_{p,DC}$ It bypasses L_{CM} and can be combined with C_{BC} .

Near Electric Field Couplings Lead to High CM EMI

EMI Reduction by Shielding the DC Capacitor

Radiated EMI of A Flyback Converter

[7] J. Yao, Y. Li, S. Wang, X. Huang, and X. Lyu, "Modeling and Reduction of Radiated EMI in a GaN IC-Based Active Clamp Flyback Adapter," IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5440-5449, May 2021.

Radiated EMI Model for Power Converters with Input and Output Cables

[8]: Y. Zhang, S. Wang and Y. Chu, "Investigation of Radiated Electromagnetic Interference for an Isolated High-Frequency DC–DC Power Converter With Power Cables," in *IEEE Transactions on Power Electronics*, vol. 34, no. 10, pp. 9632-9643, Oct. 2019.

Radiated EMI Model of A Flyback Converter

Radiated EMI Reduction with A Shielding

Note: Please cite our work/papers when you publish or share the related work, it is very important to us as it means respect to our contributions