Simple Approach to Isolated High-Current Measurement Webinar

June 15th, 2021

Presenter: Ted Smith

Current Sensing System Level Perspective Overview

Achieving Cost Effective Isolation

Differential Hall Principle

Solving Thermal Challenges

Managing Noise While Maximizing Bandwidth

Easy Implementation Techniques

Inverter as an example

3 Phase Inverter Low Side Current Sensing

- No isolation needed
- Load current is detected, but individual phase currents unknown
- Phase short circuit goes undetected

3 Phase Inverter Low Side Current Sensing

- No isolation needed
- Phase currents can be reconstructed in microcontroller with some difficulty
- Phase short circuit goes undetected

3 Phase Inverter Phase Current Sensing

- Phase currents are known
- Load shorts are detected
- Isolation required

3 Phase Inverter Isolation

Current Sensing Design Options

Current Transformers

PRO

- Accurate
- Isolation included

CON

- AC only
- Large Footprint (XYZ)
- Expensive

Current Sensing Design Options

Shunt + Amplifier

PRO

• Simple V = iR

CON

- Multiple Components/Large Footprint
- Isolated Amplifier Required
- Large footprint (shunt + iso amp + Kelvin connections)
- Power dissipation

Current Sensing Design Options

PRO

- Complete isolated current sensor in SOIC
- Single IC easy design in
- Smallest solution footprint
- Senses up to 50 A
- 0.9 m Ω primary power efficient
- Cost Effective

CON

- Sensing limited to 50 A primary current
- Max current limited by thermal dissipation of SOIC-8

Working Voltage

- Lifetime continuous operating voltage
- Determines limit to prevent long-term degradation of insulation
- Viorm = 250 VRMS

Peak Isolation

- One time overvoltage for example, electrical spike
- Viso = 2200 Vpeak (min)

Design Perspective

- Able to operate continuously at or below Viorm
- No guardband / margin required

Technical Detail About Differential Hall-Based Sensing

Differential Sensing Results in Stray Field Immunity

- Adjacent Load Currents Can Cause Stray Magnetic Fields
- Differential Sensing Results Stray Field
 Immunity
- Output Voltage Proportional to Measured Field Difference:

 $B_1 - B_2 = 0$ Stray Field is Removed

 $B_1 - (-B_2) = B_{target}$

Solving Thermal Challenges

- Current Sensor
 - Lower Internal Resistor is Better: $0.9m\Omega$
- Example: 30 A_{rms} Load
- P = 0.9 m Ω * 30 A * 30 A = 0.81 W
- Die temp change < 35°

Bandwidth Control for ADC Interface

- Pin Configurable Bandwidth Range: 1 kHz ... 100 kHz
- Reduction of Sensors Bandwidth
 - Simple Single Small Passive Capacitor
- Designs which don't require full bandwidth can benefit from lower noise
- Examples:
 - Full bandwidth 63 mA noise
 - 20 kHz switching set BW to 40 kHz 45 mA noise
 - DC current sense only 5 mA noise

System Interfacing with Ratiometric Output

- Analog Ratiometric Signals
 - No extra external reference
- Covers AC & DC Currents
 - 0 A defined at VCC/2
- Bandwidth up to 100 kHz

Ipmax = 5 A, 10 A, 20 A, 30 A, 40 A, or 50 A

MPS

Cost Effective Isolated Current Sensing

- Single IC Solution
- Standard SOIC-8
- Smallest Solution Footprint
- Integrated True Galvanic Isolation

Part Number	Supply (Vcc)	Current Options	Accuracy	Isolation
MCS1800	3.3V	±12.5A, ±25A	3%	1000V
MCS1801	5V			
MCS1802	3.3V	±5, ±10, ±20, ±30, ±40, ±50A	2.5%	2200V
MCS1803	5V			

- Visit <u>https://www.monolithicpower.com/en/products/sensors/current-sensors.html</u>
- Datasheets available online
- Product is released to production

Thank You – Q&A

For more information, contact: <u>sensors@monolithicpower.com</u>

Check out our Sensor Solutions brochure at MonolithicPower.com

